INFORMS Student Competition

Agustín Chiu, Martín Costabal, Macarena Navarro, Joaquín Ossandón, Sebastián Vásquez

Pontificia Universidad Católica de Chile

April 27th, 2020 - Virtually in Denver, CO

John R. Birge, Committee Chair Levin Distinguished Service Professor of Operations Management University of Chicago, Booth School of Business

Willem-Jan Van Hoeve, Committee Chair Carnegie Bosch Professor of Operations Research Carnegie Mellon University, Tepper School of Business

Dinámicas de grupo

- Comienzo: Fines de diciembre. Fin: 27 de Enero.
- Heterogeneidad.
- Dos equipos: Simulación y métodos para la toma de decisiones.
- Reuniones grupales semanales.
- Últimas semanas de Enero: ¡Ardió Roma!

Aprendizajes

- Armar un buen equipo: Habilidades, responsabilidad, motivación.
- Tener tolerancia al fracaso y superación.
- Confiar en las habilidades del equipo.
- Investigar, pedir ayuda y trabajar mucho.

Advisors

Contents

Problem & Data

Solution approach

Solution selection

Insights for Manufacturing Executive JB Team

Contents

Problem & Data

Solution approach

Solution selection

Insights for Manufacturing Executive JB Team

Context

- Five manufacturing locations: Columbus, Detroit, Green Bay, Omaha, and Springfield.
- Independent work, overall demand.
- Demand of SKUs (color, size, flavor, type of package).
- Transportation between locations, before manufacturing process.

JBM's problem Task and objective

- Design a list of work orders to cover overall demand.
- Trade off between demand coverage, overall cost, and makespans.

Key assumptions

• Transportation

- One truck and one trip per location.
- Cost depends linearly on the quantity transported.
- No transfers after production starts.

• Production

- No bin contamination allowed.
- Bins can be re-filled and partially emptied.

Data

- D'Agostinos & Pearson's Normal distribution fit for process rates (95% level of confidence).
- Aggregated process rates per process and location (*t*-test and *F*-test).
- Maximum coefficient of variation (^s/_{x̄}): 22.8%.

Contents

Problem & Data

Solution approach

Solution selection

Insights for Manufacturing Executive JB Team

Solution approach

Solution approach

Solution approach

Production planning

First-stage problem

- Purpose: Assign initial RMI and local demands.
- MIP.
- Initial production time approximation.

Work orders generation

First-stage problem

- Purpose: Design work orders per location.
- Iterative procedure.
- Color ranking.

Simulation

Second-stage problem

- Purpose: Compute real makespans.
- Discrete Event Simulation.
- "Push" Policy.

Simulation: Bin filling

Second-stage problem

Second-stage problem

- Purpose: Explore MIP's domain to obtain better feasible solutions.
- Randomized cut generation procedure.

Initial feasible raw material transfer

Green Bay-Detroit transfer forbidden

Raw material transfer re-optimization

Calibration

• Purpose: Tune production time parameters.

Contents

Problem & Data

Solution approach

Solution selection

Insights for Manufacturing Executive JB Team

- Trade off between overall cost and demand makespan.
- Based on average rates.

- Trade off between overall cost and demand makespan.
- Based on average rates.

Selected solution ★

- Demand makespan: 160 days.
- Total makespan: 164 days.
- Overall cost: \$38,061,940.
- Transfers: Springfield, Columbus and Detroit to Omaha.

Cheapest solution covering demand

- Overall cost: \$38,061,430.

Solution's validation

- Simulated demand makespan: 162 days.
- Simulated total makespan: 166 days.
- Optimality Gap (w.r.t. simulation relaxation): 3%

Further analysis

Detected bottlenecks after simulation

- Detroit defines total makespan. Columbus follows.
- Bottleneck in PFO: 97% of utilization rate.
- Total makespan reduction
 - + 1 PFO machine in Detroit:

(-4) days.

Further analysis

Detected bottlenecks after simulation

- Detroit defines total makespan. Columbus follows.
- Bottleneck in PFO: 97% of utilization rate.

Total makespan reduction

+ 1 PFO machine in Detroit:

(-4) days.

+ 1 PFO machine in Columbus:

(-6) days.

Further analysis

• Detected bottlenecks after simulation

- Detroit defines total makespan. Columbus follows.
- Bottleneck in PFO: 97% of utilization rate.

Total makespan reduction

+ 1 PFO machine in Detroit:

(-4) days.

+ 1 PFO machine in Columbus:

(-6) days.

+ 1 PKO–Bag machine in Detroit and Columbus:

(-9) days.

Further analysis

• Detected bottlenecks after simulation

- Detroit defines total makespan. Columbus follows.
- Bottleneck in PFO: 97% of utilization rate.
- Total makespan reduction
 - + 1 PFO machine in Detroit:

(-4) days.

+ 1 PFO machine in Columbus:

(-6) days.

+ 1 PKO–Bag machine in Detroit and Columbus:

(-9) days.

+ 1 PKO–Box in Detroit and Columbus + double CLO rate in each location:

(-65) days.

Further analysis

• One extra transportation truck:

(-\$18,300) cost. (-2) days.

• MIP can solve (to optimality) instances with up to 70 color agents or 6 location within 600 seconds.

Contents

Problem & Data

Solution approach

Solution selection

Insights for Manufacturing Executive JB Team

Investing in additional machines for process bottlenecks reduces makespan 1 extra PFO machine in Detroit reduces total makespan by 4 days.

Investing in additional machines for process bottlenecks reduces makespan

Investing in additional transportation trucks reduces cost and makespan 1 extra truck reduces cost by \$18,300 and total makespan by 2 days.

- Investing in additional machines for process bottlenecks reduces makespan 1 extra PFO machine in Detroit reduces total makespan by 4 days.
- Investing in additional transportation trucks reduces cost and makespan 1 extra truck reduces cost by \$18,300 and total makespan by 2 days.
- Investing in RMI bins for Omaha can reduce costs and total makespan: Highest throughput, lowest unit production cost, and one of the lowest total makespan.

- Investing in additional machines for process bottlenecks reduces makespan 1 extra PFO machine in Detroit reduces total makespan by 4 days.
- Investing in additional transportation trucks reduces cost and makespan 1 extra truck reduces cost by \$18,300 and total makespan by 2 days.
- Investing in RMI bins for Omaha can reduce costs and total makespan: Highest throughput, lowest unit production cost, and one of the lowest total makespan.
- Ľ
 - Following the "Push" policy can reduce leftover material production and increase utilization rates.

97% of utilization rate for process bottleneck machines in Detroit.

- Investing in additional machines for process bottlenecks reduces makespan 1 extra PFO machine in Detroit reduces total makespan by 4 days.
- Investing in additional transportation trucks reduces cost and makespan 1 extra truck reduces cost by \$18,300 and total makespan by 2 days.
- Investing in RMI bins for Omaha can reduce costs and total makespan: Highest throughput, lowest unit production cost, and one of the lowest total makespan.
- Following the "Push" policy can reduce leftover material production and increase utilization rates. 97% of utilization rate for process bottleneck machines in Detroit.

Color ranking can be helpful when overall demand cannot be covered.

- Investing in additional machines for process bottlenecks reduces makespan 1 extra PFO machine in Detroit reduces total makespan by 4 days.
- Investing in additional transportation trucks reduces cost and makespan 1 extra truck reduces cost by \$18,300 and total makespan by 2 days.
- Investing in RMI bins for Omaha can reduce costs and total makespan: Highest throughput, lowest unit production cost, and one of the lowest total makespan.

Following the "Push" policy can reduce leftover material production and increase utilization rates.

97% of utilization rate for process bottleneck machines in Detroit.

Color ranking can be helpful when overall demand cannot be covered.

The valid lower bound can be used to implement a pruning strategy.

INFORMS Student Competition

Agustín Chiu, Martín Costabal, Macarena Navarro, Joaquín Ossandón, Sebastián Vásquez

Pontificia Universidad Católica de Chile

April 27th, 2020 - Virtually in Denver, CO

References

D'Agostino, R. and Pearson, E. S. (1973).

Tests for departure from normality. empirical results for the distributions of b^2 and \sqrt{b} . Biometrika, 60(3):613–622.

Garey, M. R., Johnson, D. S., and Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. *Mathematics of operations research*, 1(2):117–129.

Pessoa, A., Uchoa, E., and Poggi de Aragão, M. (2009).

A robust branch-cut-and-price algorithm for the heterogeneous fleet vehicle routing problem.

Networks: An International Journal, 54(4):167–177.

Pochet, Y. and Wolsey, L. A. (2006).

Production planning by mixed integer programming.

Springer Science & Business Media.

Turhan, A. M. and Bilgen, B. (2017).

Mixed integer programming based heuristics for the patient admission scheduling problem.

Computers & Operations Research, 80:38-49.

Initial solution approaches

- MIP to model the complete process.
- IP to model the complete process, based on Flow Shop Scheduling Problem and Capacity Indexed Vehicle Routing Problem.

RMI initial inventory statistics

Location	Remaining capacity	Empty RMI bins
Columbus	7.33%	2
Detroit	9.54%	2
Green Bay	64.24%	1
Omaha	22.43%	3
Springfield	9.37%	2

Processing rates statistics (pounds/hour)

Average processing rates. Std. Dev. between parenthesis

Process	Detroit	Columbus	Green Bay	Springfield	Omaha
CLO	3,420	2,280	2,050	1,260	4,440
CLU	(0)	(0)	(0)	(0)	(0)
DEO	1,349	759	850	1,139	1,199
PFU	(150)	(100)	(120)	(99)	(80)
	2,999	2,400	1,795	1,194	3,590
FNU-Dag	(528)	(373)	(304)	(272)	(551)
	3,081	2,468	1,846	1,228	3,693
FIND-DOX	(502)	(385)	(302)	(255)	(537)

Production planning step MIP

min
$$\lambda_1 \cdot (\tau_{RMI} + \tau_{OB}) + \lambda_2 \cdot CT + (1 - \lambda_1 - \lambda_2) \left(\sum_{c \in C, f \in F, p \in P} \alpha_{cf}^p \right)$$
 (1)

s.t.
$$x_{bc}^p \leq \kappa_{RMI}^p \cdot z_{bc}^p$$
 $p \in P, \ c \in C, \ b \in B_{RMI}^p$ (2)

$$\sum_{b \in B_{RMI}^p} x_{bc}^p = \sum_{b \in B_{RMI}^p} O_{bc}^p + \sum_{a \in P \setminus \{p\}} (y_{ap}^c - y_{pa}^c) \qquad p \in P, \ c \in C$$

$$y_{ab}^c \le 500, 000 \cdot \bar{y}_{ab}^c \qquad \qquad c \in C, \ a, b \in P : a \neq b$$
(4)

$$\sum \qquad \bar{y}_{pa}^c \leq 1 \qquad \qquad p \in P$$

$$c \in C, a \in P \setminus \{p\}$$

(5)

$$\sum_{c \in C} z_{bc}^p \le 1 \qquad \qquad p \in P, \ b \in B_{RMI}^p$$

(6)

$$\begin{split} &\sum_{p \in P} d_{csfr}^p = D_{csfr} \\ &\sum_{f \in F, \ r \in R} \frac{d_{csfr}^p}{\phi_{cs}} \leq \sum_{b \in B_{RMI}^p} x_{bc}^p \\ &\sum_{r \in R} \left(\frac{d_{csfr}}{\phi_{cs}} - \frac{d_{cs'fr}}{\phi_{cs'}} \right) \leq \alpha_{cf}^p \\ &\tau_{RMI} \geq T^p \left(\sum_{b \in B_{RMI}^p, \ c \in C} x_{bc}^p \right) \\ &\tau_{OB} \geq T^p \left(\sum_{c \in C, \ s \in S, \ f \in F, \ r \in R} d_{csfr}^p \right) \end{split}$$

 $c \in C, s \in S, f \in F, r \in R$ (7)

$$c \in C, s \in S, p \in P$$
 (8)

$$p \in P, c \in C, f \in F, s, s' \in S : s \neq s'$$
 (9)

 $p \in P$ (10)

 $p \in P$ (11)

Production planning step Calibration

• To better estimate $T^p(x)$, we applied a procedure based on moving average and linear regression to calibrate t^p .

$$T^p(x) = t^p \cdot x$$

Production planning step Scalability analysis

• The MIP solver is stable for instances of up to 70 color agents or 6 locations. For bigger instances, a heuristic approach is recommendable.

Scalability of MIP solver

Demand per size (lbs.)

Color ranking

Ranking:

(i) Gray
(ii) Orange
(iii) Pink
(iv) Red
(v) Blue

Color agent (sizes)

Work order complexity

• Metric for work order evaluation:

$$\theta(w) = \mathsf{LO} + \ln \Delta \mathsf{F},$$

where w is a work order, LO is the quantity of leftover material produced when processing w and $\Delta {\rm F}$ the number of different colors contained in w.

Simulation step

Batch size analysis

Batch size (lbs.)	Execution time (sec.)	#Rate updates	Ratio
200	333.32	1,196,175	3,589
300	240.83	803,602	3,337
500	192.05	488,791	2,545
1000	146.69	253,173	1,726

- Release batch size: 300 lbs:
 - Consistent average processing rates.
 - Reasonable average execution times.

Simulation step

Batch size selection

Selected solution Overall results

Efficient solutions found. Std. Dev. between parenthesis

	Demand-total	Average demand-total	
Solution	production makespan	production makespan	Overall cost
	with average rates (in days)	with sampled rates (in days)	
1	159.99 - 164.38	161.71 – 165.57 (0.003)	\$38,062,500
2	160.20 - 164.43	162.11 - 165.95 (0.004)	\$38,061,940
3	160.71 - 165.15	162.14 - 166.75 (0.003)	\$38,061,939
4	165.78 - 167.64	167.23 – 169.14 (0.003)	\$38,061,430

Selected solution

Locations analysis

Manufacturing	Total production (lbs)	Total number of days
site		to complete production
Green Bay	2,360,152	62.79
Omaha	11,323,298	143.52
Springfield	3,723,516	149.28
Columbus	8,575,866	162.09
Detroit	10,355,579	165.95

Manufacturing site	Total production cost (\$)	Assigned demand
Green Bay	2,407,355	5.86%
Omaha	11,300,981	24.02%
Springfield	4,091,931	16.89%
Columbus	9,331,959	25.62%
Detroit	10,875,048	27.61%

Selected solution

Machine utilization

Location	CLO Utilization	PFO Utilization	PKO Utilization	Bottleneck
Green Bay	76.30%	93.02%	99.23% (Bag) 0.00% (Box)	PKO–Bag
Omaha	74.13%	91.65%	99.65% (Bag) 3.45% (Box)	PKO-Bag
Springfield	82.42%	91.77%	11.24% (Bag) 67.74% (Box)	PFO
Columbus	96.65%	97.80%	51.80% (Bag_1) 29.52% (Bag_2) 17.58% (Box)	PFO
Detroit	76.02%	97.02%	96.30% (Bag) 2.57% (Box)	PFO

Selected solution

Transportation amounts/costs

- Only three trucks are used and all of them transfer raw material to Omaha.
- Omaha has the lowest unit production cost.

	Omaha	
Green Bay	-	
Springfield	Color Agent 29	
Springheid	(264,000 lbs/\$11,642.4)	
Columbus	Color Agent 7	
Columbus	(320,000 lbs/\$17,472)	
Dotroit	Color Agent 17	
Detroit	(500,000 lbs/\$25,550)	

Process bottlenecks analysis

Detroit and Columbus extra machines

Extra machines	Total production time reduction	Total production time reduction	Total production makespan
	in Detroit (in days)	in Columbus (in days)	reduction (in days)
1 PFO machine	-6.00	-5.01	-6.00
1 PFO machine +	30.36	5.01	0.00
1 PKO–Bag machine	-59.50	-5.01	-9.09
2 PFO machines +	20.45	5.01	0.12
1 PKO–Bag machine	-39.45	-5.01	-9.12

Lower bound on simulated makespan

Instances