PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING ABET COURSE SYLLABI

IEE2783 DIGITAL SYSTEMS LABORATORY

Credits and contact hours:	5 UC credits / 5 hours a week labs
Instructor's name:	Enrique Álvarez
Course coordinator's name	To be defined
Textbook:	Verilog Digital System Design: Register Transfer Level Synthesis, Testbench, and Verification. McGraw Hill, 2005.
Course Catalog Description:	This course allows the student to review the contents studied during the undergraduate course of digital systems through the implementation in FPGA of complex digital systems.
Prerequisite Courses:	IEE2713 Digital Systems, IEE2183 Electrical Measurements Laboratory
Co-requisite Courses:	To be defined
Status in the Curriculum:	Elective
Course Learning Outcomes:	 Design and implementation of complex digital systems using discrete components (TTL and HC) and mainly FPGAs. Learn hardware-oriented programing languages such as Verilog. Solve engineering problems with given specifications by developing digital systems.
Relation of Course to ABET Criteria:	 a. Knowledge of mathematics, science and engineering b. Design and conduct experiments: analyze and interpret data c. Design a system, component, or process d. Multidisciplinary teams e. Identify, formulate, and solve engineering problems i. Recognition of the need for, and an ability to engage in life-long learning k. Techniques, skills, and modern tools for engineering practice.

Topics covered:

- 1. Experience 1 TTL, HC and FSM design
- a. Characterization of TTL and HC technologies
- b. Design and discrete implementation of an FSM for and specific engineering problem
- 2. Experience 2 EEPROM
- a. Design and implementation of an asynchronous serial communication protocol using an EEPROM for combinational logic
- 3. Experience 3 Introduction to the FPGA
- a. Design and implementation of a function generator using an FPGA
- 4. Experience 4 Pong
- a. Use of peripherals such as the VGA
- b. Design and implementation in FPGA of the game Pong
- 5. Experience 5 Digital Piano
- a. Use of peripherals such as a computer keyboard (PS2 protocol)
- b. Design and implementation in FPGA of a two-octaves piano.
- 6. Project
- a. Design and implementation in FPGA of a complex digital system