PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING ABET COURSE SYLLABI

IEE2743 MICROCOMPUTERS

Credits and contact hours:	10 UC credits/10 hours (3 Lecture hours per week ; 3 lab session hours and 4 hours of Independent learning experience per week)		
Instructor's name:	Ricardo Tepper		
Course coordinator's name	To be defined		
Textbook:	Datasheets, Reference Manuals and Applications Guide from Microchip Technology Inc.		
Course Catalog Description:	Microcomputers and microcontrollers, architectures, functional blocks and operation. Memory devices, connection buses and interfacing devices. Peripherals and programming. The student must develop an advanced circuit based on a 32-bit microcontroller and programmed on C language using extensions, intended to control some hardware. The design requires the use of the proper tools for programming and debugging.		
Prerequisite Courses:	IEE2783 Digital Systems Laboratory		
Co-requisite Courses:	To be defined		
Status in the Curriculum:	Elective		
Course Learning Outcomes:	 To understand the functionality of blocks in a microcomputer or microcontroller. To design complex applications, use the integrated ports and extend the hardware capabilities by adding elements and interfaces. To develop real-time applications including interrupt requests and priority control. 		
Relation of Course to ABET Criteria:	 a. Knowledge of mathematics, science and engineering b. Design and conduct experiments: analyze and interpret data c. Design a system, component, or process e. Identify, formulate, and solve engineering problems g. Effective communication i. Recognition of the need for, and an ability to engage in life-long learning j. Knowledge of contemporary issues k. Techniques, skills, and modern tools for engineering practice. 		

Topics covered:	1.	Hardware blocks and operation. CPU: control logic, registers, ALU, FPU, Clock Memory: static, dynamic, non-volatile, volatile I/O: peripherals and communication Buses: internal, external, uni- and bi-directional Interrupts: priorities, real-time operation
	2.	Architecture comparison: von Neumann, Harvard; RISC vs. CISC

- 3. Software layers: BIOS, drivers, kernel, OS, applications
- 4. Use of the MPLABX IDE