	IEE3884 Óptica Adaptativa /Adaptive Optics
Nombre del curso	Requisitos: Autorización del Profesor
	10 Créditos UC
Descripción del curso	La óptica adaptativa es la tecnología asociada a la corrección en tiempo real
	de distorsiones ópticas aleatorias del frente de onda. Los principales
	desarrollos se han realizado en los campos de la astronomía y defensa, pero
	,
	también existen aplicaciones en medicina (principalmente oftalmología) y algunas en sistemas industriales.
Objetivos Contenidos	1. El alumno adquirirá competencias para el análisis y diseño de sistemas de
	óptica adaptativa a partir de conceptos de fenómenos de propagación y
	procesamiento de ondas electromagnéticas en los rangos ultravioleta, visible
	e infrarrojo y las distorsiones resultantes en las imágenes generadas.
	2. El alumno adquirirá conocimientos acerca de las tecnologías y dispositivos
	usados en este campo y estará habilitado para diseñar y operar sistemas
	ópticos de corrección de aberraciones. El aprendizaje tendrá una componente
	práctica importante.
	3. El alumno conocerá las principales aplicaciones de esta tecnología tales como la observación astronómica, la medicina e industria.
	1 Introducción
	1.1 Revisión histórica
	1.2 Evolución de los sistemas de óptica adaptativa
	1.3 Tendencias y futura generación de sistemas de óptica adaptativa
	2 Aplicaciones
	2.1 Astronomía
	2.2 Medicina
	2.3 Industria
	3 Efectos ópticos de la turbulencia atmosférica
	3.1 Modelos de la atmósfera terrestre: Kolmogorov y Von Karman
	3.2 Diseño de filtros transversales y anisoplanatismo
	4 Estructura de imagen óptica
	4.1 Formación de imágenes
	4.2 Distorsión de frente de onda y movimiento
	4.3 Efectos cuánticos
	4.4 Índices de desempeño 5 Sensores de frente de onda
	5.1 Shack-Hartmann
	5.2 Interferómetros de corte tangencial (shearing)
	5.3 Curvatura 5.4 Piramidales
	5.5 Birrefringencia
	6 Correctores de frente de onda
	6.1 Actuadores
	6.2 Espejos segmentados,
	6.3 Bimórficos
	6.4 Membrana
	6.5 Refracción
	6.6 Espejos de seguimiento
	7 Referencias laséricas
	7.1 Dispersión (scattering)
	7.1 Dispersion (scattering) 7.2 Medición de frentes de ondas de láser
	7.3 Dispersiones (scattering) de Rayleigh y en capa de sodio
	7.5 Dispersiones (scattering) de Rayleigh y en capa de soulo 7.4 Configuraciones de láser
	8 Reconstrucción de frente de onda y control
	o neconstrucción de mente de onda y control

	8.1 Principios y modelos,
	8.2 Predicción de frente de onda
	8.3 Sistemas de control
	8.4 Control óptimo
	9 Análisis de desempeño y optimización
	9.1 Fuentes de distorsión
	9.2 Errores de medición
	9.3 Desempeño usando estrellas naturales y láser
	9.4 Parámetros adaptativos
	10 Técnicas avanzadas en astronomía
	10.1 Sistemas conjugados múltiples (MCAO)
	10.2 Sistemas de objetos múltiples (MOAO)
	10.3 Sistemas de capa terrestre (GLAO)
Modalidad de evaluación	La evaluación se efectuará mediante una interrogación, un examen y una
	experiencia práctica. En esta última actividad los alumnos diseñarán y
	construirán parte de un sistema de óptica adaptativa. Las ponderaciones de
	cada una de las tres actividades serán: 30% interrogación, 40% examen y 30%
	para el trabajo práctico.
	Básica:
Bibliografía	1. Ian S. McLean, Electronic Imaging in Astronomy: Detectors and
	Instrumentation, Springer, New York, 2010.
	2. J. Cheng, The Principles of Astronomical Telescope Design, Springer-Verlag,
	Berlin, 2009.
	3. J. Porter, H. Queener, J. Lin, K. Thorn, A. Awwal, Adaptive Optics for Visión
	Science: Principles, Practices, Design and Applications, Wiley & Sons, Hoboken,
	New Jersey, 2006.
	4. J.W. Hardy, Adaptive Optics for Astronomical Telescopes, Oxford University
	Press New York, 1998.
	5 M.C. Roggemann, B.M. Welsh Imaging Through Turbulence, CRC Press,
	Boca Raton, FL, 1996.