PROGRAMA DE CURSO

2° Semestre, 2020

CURSO : Localización Óptima de Recursos (LOR)

Ubicación Óptima de Recursos en Redes (UOR)

SIGLAS : ICS3233 y IEE3533

CRÉDITOS : 10

REQUISITOS : ICS1113

PROFESOR : Vladimir Marianov Kluge (<u>marianov@ing.puc.cl</u>)

HORARIO Y SALA : Clase L-W:5

ATENCIÓN ALUMNOS : email y zoom con cita si necesario

PÁGINA WEB : Canvas

I. Descripción

Este curso entrega competencias referentes al desarrollo y uso de modelos de localización de instalaciones. Se presentan los modelos clásicos; se desarrollan extensiones mediante estudio de casos, entregándose herramientas computacionales para su resolución y análisis.

II. Objetivos

Al final de curso el alumno será capaz de:

- 1. Identificar situaciones en las cuales se debe resolver un problema de localización de instalaciones de todo tipo, es decir, fábricas, bodegas, centros de servicio, etc.; analizar estas situaciones y definir el conjunto de especificaciones para el problema de localización asociado. Las especificaciones pueden incluir condiciones de tiempos máximos de respuesta, minimización de distancias recorridas por los usuarios de un servicio, minimización de costos, condiciones aleatorias o probabilísticas, contextos competitivos, etc.
- 2. Formular un modelo del problema y determinar los valores de los parámetros necesarios para solucionarlo.

- 3. Seleccionar un método para resolver el problema, utilizando el modelo y los parámetros y de determinar así las localizaciones óptimas (o las mejores localizaciones posibles de encontrar) de un conjunto de instalaciones, de modo de cumplir las especificaciones. Entre los métodos se encuentran los programas comerciales de resolución de problemas de optimización lineales enteros o mixtos, heurísticas conocidas o que el propio alumno desarrolla, o métodos por inspección, dependiendo del tipo de problema.
- 4. Utilizar las mismas herramientas para la localización de recursos en espacios que no necesariamente son geográficos.

III. Contenidos

UNIDAD I: Introducción

- Descripción de los problemas de localización y asignación de recursos.
- Taxonomía de los problemas y modelos de localización.
- Localización de una instalación

UNIDAD II: Algunos problemas básicos en redes.

- Ruteo (rutas mínimas, TSP)
- Construcción (MST, Network Design)

UNIDAD III: Problemas de cobertura

- Introducción y noción de cobertura.
- Cobertura de conjuntos (LSCP), aplicaciones y variantes.
- Cobertura máxima (MCLP), cobertura múltiple cobertura redundante.
- Redes de cobertura

UNIDAD III: Problemas de centro y de mediana

- p Centro en la red y en sus vértices.
- Descripción y propiedades de la p-mediana.
- Técnicas de resolución: heurísticas, relajación Lagrangeana.
- Mediana en redes

UNIDAD V: Problemas de Localización de Plantas o con costos fijos (FCLP / SPLP)

- El FCLP sin capacidad.
- El problema con capacidad.
- Aplicaciones, variantes.
- Técnicas de resolución.

UNIDAD VI: Extensiones (a incluir dependiendo del tiempo y semestre)

- Localización de instalaciones indeseadas.
- Localización de hubs (concentradores).
- Localización de instalaciones bajo competencia.
- Localización bajo incertezas (Cobertura máxima esperada (MEXCLP), máxima disponibilidad (PLSCP, MALP), congestión en instalaciones fijas)
- Otros

III. Metodología

Cada unidad del curso tendrá la siguiente estructura.

- Clases expositivas (cátedra)
- Análisis de casos en forma grupal.
- Posibles controles breves de los tópicos tratados en la cátedra y los casos.
- Caso extenso

IV. Aspectos Administrativos

- ✓ Resolución de casos. La nota de los casos (NC) es el promedio simple de éstos, debe ser ≥ 4,0.
- ✓ Evaluación de pares en actividades grupales (casos). Se harán en conjunto con la entrega de los casos. Cada integrante de grupo dispondrá de 100 puntos a repartir entre los integrantes del grupo, incluyéndose a sí mismo, para indicar el porcentaje de aporte de cada integrante al caso. Estos porcentajes se utilizarán para ponderar NC. Si frecuentemente un alumno tiene porcentaje bajo, el profesor puede tomar otras medidas, incluida la de reprobación.
- ✓ Nota Final (NF). La nota final del curso, será NC ponderado por la evaluación de pares, sólo si NC ≥ 4,0; de lo contrario el alumno reprueba con nota igual a min{3,9; NF}.
- ✓ Reclamos. Todos los reclamos relativos a las notas de las actividades del curso podrán realizarse <u>hasta una semana después</u> de la fecha en que hayan sido entregadas las notas. Deberán estar bien fundamentados y deben ser presentados <u>por escrito</u>, acompañando los antecedentes. Se revisarán todas las preguntas, por lo que eventualmente también podrían variar los puntajes de preguntas no reclamadas.

Código de Honor. Este curso adscribe el Código de Honor establecido por la Universidad, el que es vinculante. Todo trabajo evaluado en este curso debe ser propio. En caso de que exista colaboración permitida con otros estudiantes, el trabajo deberá referenciar y atribuir correctamente dicha contribución a quien corresponda. Como estudiante es su deber conocer la versión en línea del Código de Honor

(https://www.uc.cl/codigo-de-honor/). Hay rigurosidad en entregar la información de faltas a la ética a la Dirección de Docencia y, si corresponde, a Secretaría General.

V. Referencias Bibliográficas Complementarias

- Laporte G., Nickel S. and Saldanha da Gama F. (eds.) "Facility Location". Springer, NY, First Edition 2015 or Second edition 2019.
- Daskin, M.: "Network and Discrete Location: Models, Algorithms and Applications". 2^d edition. Wiley Interscience Series in Discrete Mathematics and Optimization, 2013.
- Eiselt H. A. and Marianov V. (eds): "Applications of Location Analysis". Springer, NY, 2015.
- Eiselt H. A. and Marianov V. (eds): "Foundations of Location Analysis". Springer, NY, 2011.
- Farahani RZ, Hekmatfar M, (eds) Facility Location: Concepts, models, Algorithms and Case Studies, Physica-Verlag, Heidelberg, 2009
- Drezner, Z. (ed): "Facility Location: A survey of Applications and Methods".
 Springer, 1995.
- Drezner, Z. and Hamacher H. (ed): "Facility Location: Applications and Theory". Springer, 2002.
- Church RL, Murray AT, (eds) Business Site Selection, location analysis and GIS, Wiley, New Jersey, 2009