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Dindmicas de grupo

Comienzo: Fines de diciembre. Fin: 27 de Enero.
Heterogeneidad.

Dos equipos: Simulacién y métodos para la toma de decisiones.
Reuniones grupales semanales.

Ultimas semanas de Enero: jArdié Roma!



Aprendizajes

Armar un buen equipo: Habilidades, responsabilidad, motivacién.
Tener tolerancia al fracaso y superacién.
Confiar en las habilidades del equipo.

Investigar, pedir ayuda y trabajar mucho.
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Problem & Data Solution approach Solution selection Insights

Context

Five manufacturing locations: Columbus, Detroit, Green Bay, Omaha,
and Springfield.

Independent work, overall demand.

Demand of SKUs (color, size, flavor, type of package).

® Transportation between locations, before manufacturing process.

Color Size Flavor Bag/Box
Raw Material Classifier Pre-finish Pre-finish Pack Packaging
Inventory Store Inventory Store Operation Inventory Store
(RMI) (cLo) (PFI) (PFO) (PKI) (PKO)

Manufacturing process. Source: ISC, 2019
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Problem & Data Solution approach Solution selection Insights

JBM's problem

Task and objective

® Design a list of work orders to cover overall demand.
® Trade off between demand coverage, overall cost, and makespans.

Start of production Demand Makespan  Total Makespan

Demand makespan
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Problem & Data

Key assumptions

® Transportation

- One truck and one trip per location.
- Cost depends linearly on the quantity transported.
- No transfers after production starts.

® Production

- No bin contamination allowed.
- Bins can be re—filled and partially emptied.
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Problem & Data Solution approach Solution selection Insights

Data

® D’'Agostinos & Pearson'’s

Aggregated Packaging Rates of Columbus in Bag

Normal distribution fit for F——
0 0.0040 = Data
process rates (95% level of .
Conﬁdence) g 0.0030
® Aggregated process rates per £
g0.00ZG
process and location (t—test and £ oors

F_test) . 0.0010

0.0005

e Maximum coefficient of
0.0000 -4

S 1700 1800 1900 2000 2100 2200 2300 2400 2500

. . . 0
vari atlon (§ ) - 22 . 8 A) . Rate of Packaging (Mean: 2127.123, Std: 100.681, p-value: 0.79787)
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Problem & Data Solution approach Solution selection

Production planning

First—stage problem

First—stage

Production
planning

® Purpose: Assign initial RMI and local demands.
°* MIP.

® |nitial production time approximation.

Insights
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Problem & Data Solution approach Solution selection

Work orders generation

First—stage problem

First—stage

Work orders
generation

® Purpose: Design work orders per location.
® |terative procedure.

® Color ranking.

Insights
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Problem & Data Solution approach Solution selection Insights

Simulation

Second-stage problem

Second-stage

® Purpose: Compute real makespans.
® Discrete Event Simulation.
® “Push” Policy.
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Problem & Data Solution approach Solution selection Insights

Simulation: Bin filling

Second-stage problem

Does it have the
same SKU and fits?

Move on to
next bin

Are there
bins to check?

lNo

Fill empty bin
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Problem & Data Solution approach Solution selection

Simulation: Bin emptying

Second-stage problem

Does a WO match
this bin?

Process bin

Are there
bins to check?

Move on to
next bin

Produce leftover

Insights
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Problem & Data Solution approach Solution selection Insights

Randomized kick

Randomized kick

® Purpose: Explore MIP’s domain to obtain better feasible solutions.

® Randomized cut generation procedure.
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Problem & Data
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Solution approach
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Problem & Data Solution approach Solution selection Insights

Calibration

Calibration

® Purpose: Tune production time parameters.
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Solution selection

38.10 * Selected solution
“  Min cost solution
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® Trade off between overall cost and demand makespan.

® Based on average rates.
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Problem & Data
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® Trade off between overall cost and demand makespan.

® Based on average rates.
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Solution selection

Solution selection

e Selected solution %

Demand makespan: 160 days.

Total makespan: 164 days.

Overall cost: $38,061,940.

Transfers: Springfield, Columbus and Detroit to Omaha.

® Cheapest solution covering demand
- Overall cost: $38,061,430.

e Solution’s validation

- Simulated demand makespan: 162 days.
- Simulated total makespan: 166 days.
- Optimality Gap (w.r.t. simulation relaxation): 3%
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Solution selection

Further analysis

® Detected bottlenecks after simulation

- Detroit defines total makespan. Columbus follows.
- Bottleneck in PFO: 97% of utilization rate.

® Total makespan reduction

+ 1 PFO machine in Detroit:
(-4) days.
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- Bottleneck in PFO: 97% of utilization rate.

® Total makespan reduction

+ 1 PFO machine in Detroit:

(-4) days.
+ 1 PFO machine in Columbus:

(-6) days.
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Solution selection

Further analysis

® Detected bottlenecks after simulation
- Detroit defines total makespan. Columbus follows.
- Bottleneck in PFO: 97% of utilization rate.

® Total makespan reduction
+ 1 PFO machine in Detroit:
(-4) days.
+ 1 PFO machine in Columbus:
(-6) days.
+ 1 PKO-Bag machine in Detroit and Columbus:
(-9) days.
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Solution selection

Further analysis

® Detected bottlenecks after simulation
- Detroit defines total makespan. Columbus follows.
- Bottleneck in PFO: 97% of utilization rate.

® Total makespan reduction

+ 1 PFO machine in Detroit:
(-4) days.
+ 1 PFO machine in Columbus:
(-6) days.
+ 1 PKO-Bag machine in Detroit and Columbus:
(-9) days.
+ 1 PKO-Box in Detroit and Columbus + double CLO rate in each
location:
(-65) days.

19/23



Problem & Data Solution approach Solution selection Insights

Further analysis

® One extra transportation truck:

(-$18,300) cost.
(-2) days.

® MIP can solve (to optimality) instances with up to 70 color agents or
6 location within 600 seconds.
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Problem & Data Solution approach Solution selection Insights

Insights for Manufacturing Executive JB Team

h Investing in additional machines for process bottlenecks reduces makespan
1 extra PFO machine in Detroit reduces total makespan by 4 days.
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Problem & Data Solution approach Solution selection Insights

Insights for Manufacturing Executive JB Team

a Investing in additional transportation trucks reduces cost and makespan
1 extra truck reduces cost by $18,300 and total makespan by 2 days.
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Problem & Data Solution approach Solution selection Insights

Insights for Manufacturing Executive JB Team

@ Investing in RMI bins for Omaha can reduce costs and total makespan:
Highest throughput, lowest unit production cost, and one of the lowest total
makespan.
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Problem & Data Solution approach Solution selection Insights

Insights for Manufacturing Executive JB Team

v

|§\| Following the “Push” policy can reduce leftover material production and

increase utilization rates.
97% of utilization rate for process bottleneck machines in Detroit.
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Problem & Data Solution approach Solution selection Insights

Insights for Manufacturing Executive JB Team

l_- Color ranking can be helpful when overall demand cannot be covered.
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Insights for Manufacturing Executive JB Team

Q The valid lower bound can be used to implement a pruning strategy.
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Appendix

Initial solution approaches

® MIP to model the complete process.

® [P to model the complete process, based on Flow Shop Scheduling
Problem and Capacity Indexed Vehicle Routing Problem.
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Appendix

RMI initial inventory statistics

Location | Remaining capacity | Empty RMI bins
Columbus 7.33% 2
Detroit 9.54% 2
Green Bay 64.24% 1
Omaha 22.43% 3
Springfield 9.37% 2
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Appendix

Processing rates statistics (pounds/hour)

Average processing rates. Std. Dev. between parenthesis

Process | Detroit | Columbus | Green Bay | Springfield | Omaha
cLO 3,420 2,280 2,050 1,260 4,440
(0) (0) (0) (0) (0)

PEO 1,349 759 850 1,139 1,199
(150) (100) (120) (99) (80)

PKO-Bag 2,999 2,400 1,795 1,194 3,590
(528) (373) (304) (272) (551)

3,081 2,468 1,846 1,228 3,693

PKO-Box | (500 (385) (302) (255) | (537)
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Appendix

Production planning step

MIP
A1 (TRMT +70B) + A2 - CT + (1 = X1 = A2) E als e
c€C, fEF, pEP
P p p P
The S FRMI Pbe PEP c€C, bE By,
@)
E zp) = E oY + E (Yap = Ypa) pEP, cEC
P p
bEBY 1y bEBY i1 a€P\{p}
()
yap < 500,000 - Fg, ceC,a,beP:a#b
(4)

E Upa <1 pEP

ceC, aeP\{p}

)

P P
E 2P <1 pEP bEBY, .

ceC

(6)

4/18



Appendix
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Appendix

CT = CTbag + CThox + CTtransport (12)
1 or — dv .
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peEP ceC, ses, feF peEP
(13)
4P
_ » cs f (box)
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Appendix

Production planning step

Calibration

® To better estimate T?(x), we applied a procedure based on moving average
and linear regression to calibrate ¢P.

TP(z) =tV - x
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Appendix

Production planning step
Scalability analysis

® The MIP solver is stable for instances of up to 70 color agents or 6 locations.
For bigger instances, a heuristic approach is recommendable.

600 ® 0coe cocee

500

w 5
g
g g

Runtime (in seconds)

S
8

100

40 45 50 55 60 65 70 75 80
Number of color agents

Scalability of MIP solver
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Appendix

Fraction of size

Demand per size (lbs.)

Color ranking

Color agent (sizes)

Ranking;:
(i) Gray
(i) Orange
(iii) Pink
(iv) Red
(v) Blue
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Appendix

Work order complexity

® Metric for work order evaluation:
O(w) = LO + In AF,

where w is a work order, LO is the quantity of leftover material
produced when processing w and AF the number of different colors
contained in w.
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Appendix

Simulation step

Batch size analysis

Batch size (Ibs.) Execution time (sec.) #Rate updates Ratio
200 333.32 1,196,175 3,589
300 240.83 803,602 3,337
500 192.05 488,791 2,545
1000 146.69 253,173 1,726

® Release batch size: 300 Ibs:

- Consistent average processing rates.
- Reasonable average execution times.
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Appendix

#Rates updates

Execution time

Simulation step

Batch size selection

(200; 3,589)

°
(300; 3,337)
°

(500; 2,545)
°

(1000; 1,723)
°

| | | |
200 400 600 800
Batch size

|
1,000
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Appendix

Selected solution

Overall results

Efficient solutions found

. Std. Dev. between parenthesis

Solution

Demand-total
production makespan
with average rates (in days)

Average demand-total
production makespan
with sampled rates (in days)

Overall cost

1 159.99 — 164.38 161.71 — 165.57 (0.003) | $38,062,500
2 160.20 — 164.43 162.11 - 165.95 (0.004) | $38,061,940
3 160.71 - 165.15 162.14 - 166.75 (0.003) | $38,061,939
4 165.78 — 167.64 167.23 — 169.14 (0.003) | $38,061,430
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Appendix

Selected solution

Locations analysis

Manufacturing

Total production (lbs)

Total number of days

site to complete production
Green Bay 2,360,152 62.79
Omaha 11,323,298 143.52
Springfield 3,723,516 149.28
Columbus 8,575,866 162.09
Detroit 10,355,579 165.95

Manufacturing

Total production

Assigned demand

site cost ($)
Green Bay 2,407,355 5.86%
Omaha 11,300,981 24.02%
Springfield 4,091,931 16.89%
Columbus 9,331,959 25.62%
Detroit 10,875,048 27.61%
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Appendix

Selected solution

Machine utilization

Location | CLO Utilization | PFO Utilization | PKO Utilization | Bottleneck
99.23% (Bag)
0 0 |
Green Bay 76.30% 93.02% 0.00% (Box) PKO-Bag
99.65% (Bag)
0 0 |
Omaha 74.13% 91.65% 3.45% (Box) PKO-Bag
o 11.24% (Bag)
0, 0,
Springfield 82.42% 91.77% 67.74% (Box) PFO
51.80% (Bag-1)
Columbus 96.65% 97.80% | 29.52% (Bag-2) PFO
17.58% (Box)
. 96.30% (Bag)
0, 0,
Detroit 76.02% 97.02% 2.57% (Box) PFO
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Appendix

Selected solution

Transportation amounts/costs

® Only three trucks are used and all of them transfer raw material to
Omaha.

® Omaha has the lowest unit production cost.

Omabha
Green Bay .
Springfield (264,000 ?;lj;ﬁgzzgi?
Columbus (320‘000(::’[)':’/“;'1\?6:;2;
ot
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Appendix

Process bottlenecks analysis

Detroit and Columbus extra machines

Total production

Total production

Total production

Extra machines time reduction time reduction makespan
in Detroit (in days) | in Columbus (in days) | reduction (in days)
1 PFO machine -6.00 -5.01 -6.00
1 PFO machine +
1 PKO-Bag machine -39.36 -5.01 -9.09
2 PFO machines + 39.45 5.01 912

1 PKO-Bag machine




Appendix

Lower bound on simulated makespan

Days

180

175

170

165

160

—e— Simulated makespan
—m— Lower bound

Instances
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