PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRICA

IEE2413 ELECTRONICA

Créditos y horas: 5 créditos UC / 5 horas (5h. de Laboratorio)

Profesor: Enrique Álvarez

Coordinador: Por definir

Bibliografía: Sedra, Smith Circuitos Microelectrónicos, Oxford

University Press, cuarta edición, 1999. Norbert R. Malik, Circuitos Electrónicos, Prentice Hall, 1996.

Donald Neamen Microelectronic Circuit Analysis and Design, Mc Graw

Hill, tercera edición, 2006.

Descripción: El curso está estructurado para que el alumno comprenda los

fundamentos de la Electrónica, incluyendo los dispositivos y circuitos básicos. Al final del curso, el alumno estará capacitado para analizar una amplia variedad de circuitos electrónicos básicos y de mediana

complejidad.

Prerequisitos: IEE2123 Circuitos Eléctricos

Co-requisitos: No tiene

Tipo de curso: Curso Optativo

Objetivos de aprendizaje:

1. Distinguir y explicar el funcionamiento de un circuito electrónico a alto nivel, en términos de sus bloques

funcionales y sus señales.

- 2. Distinguir y explicar el funcionamiento básico de los dispositivos semiconductores.
- 3. Distinguir modelos matemáticos simples de componentes electrónicos tales como diodo, transistor bipolar, transistor de efecto de campo, y de utilizarlos para analizar el comportamiento de un circuito.
- 4. Analizar la polarización de un circuito electrónico, y a partir de ella, extraer un modelo de pequeña señal del circuito.
- 5. Analizar el funcionamiento y la respuesta en los dominios del tiempo y la frecuencia, de circuitos electrónicos simples con transistores, amplificadores operacionales y componentes pasivos, mediante cálculos hechos a mano.
- 6. Analizar el funcionamiento y la respuesta en los dominios del tiempo y la frecuencia, de circuitos electrónicos con transistores, amplificadores operacionales y componentes pasivos, mediante

simulaciones.

- 7. Diseñar circuitos lineales simples utilizando amplificadores operacionales y componentes pasivos.
- 8. Analizar el funcionamiento de osciladores electrónicos armónicos mediante la condición de oscilación de

Barkhausen, y determinar su frecuencia de oscilación.

- 9. Usar con efectividad programas de simulación de circuitos.
- a. Conocimiento de matemáticas, ciencias e Ingeniería.
- b. Diseñar y realizar experimentos: analizar e interpretar datos.
- c. Diseñar sistemas, componentes o procesos.
- e. Identificar, formular y resolver problemas de Ingeniería.
- j. Conocimiento de temas contemporáneos.
- k. Técnicas, habilidades y herramientas modernas para la práctica de la Ingeniería

Contenidos:

Criterios ABET

relacionados al curso:

- 1. Fundamentos y definiciones
- 1.1. Introducción
- 1.1.1. Señales analógicas y digitales; circuitos analógicos, digitales y de señales mixtas
- 1.1.2. Circuitos integrados y circuitos de componentes discretos; sistemas embebidos
- 1.1.3. Ley de Moore
- 1.1.4. Tecnologías de fabricación
- 1.1.5. Compañías
- 1.2. Diseño electrónico
- 1.2.1. Especificaciones
- 1.2.2. Diseño a nivel de sistema: Diagrama de bloques. Amplificadores, conversores de datos, filtros, PLLs, Reguladores de tensión
- 1.2.3. Diseño a nivel de transistores
- 1.2.4. Diseño a nivel de capa fija
- 1.3. Modelos
- 1.3.1. Modelos de gran señal
- 1.3.2. Linealización y pequeña señal
- 1.4. Especificaciones de circuitos electrónicos
- 1.4.1. Ganancia
- 1.4.2. Ancho de banda
- 1.4.3. Impedancias de entrada y salida
- 1.4.4. Excursión de salida
- 1.4.5. Modo común y modo diferencial
- 1.4.6. PSRR
- 1.4.7. CMRR
- 1.4.8. Slew rate
- 1.4.9. Ruido
- 1.4.10. Temperatura
- 1.5. Redes de dos puertos

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA

DEPARTAMENTO DE INGENIERIA ELECTRICA

- 1.6. El amplificador de voltaje
- 1.6.1. Modelo lineal
- 1.6.2. Producto ganancia-ancho de banda
- 1.6.3. Aplificador diferencial
- 1.6.4. Impedancias; teorema de Miller
- 1.7. Respuesta en frecuencia
- 1.7.1. Diagramas de Bode
- 1.7.2. Constantes de tiempo
- 1.7.3. Concepto de polo dominantes
- 1.7.4. Sistemas de primer orden
- 1.7.5. Sistemas de segundo orden
- 1.8. Respuesta en el tiempo
- 1.8.1. Conceptos (overshoot, ringig, etc)
- 1.8.2. Sistemas de primer orden
- 1.8.3. Sistemas de segundo orden
- 1.8.4. Vinculo con respuesta en frecuencia
- 2. El amplificador operacional
- 2.1. Introducción
- 2.2. Realimentación
- 2.2.1. Estabilidad
- 2.2.2. Concepto de cortocircuito virtual
- 2.2.3. Efectos sobre ganancia, ancho de banda, linealidad, sensibilidad
- 2.3. Aplicaciones
- 2.3.1. Sumador, restador, integrador, diferenciador
- 2.3.2. Filtros
- 2.3.3. Conversores de datos
- 2.3.4. Aplicaciones no lineales
- 2.4. Aspectos prácticos
- 2.4.1. Polarización
- 2.4.2. Valores de componentes
- 2.4.3. Amplificadores operacionales comerciales
- 2.4.4. Amplificadores operacionales de transconductancia
- 3. El diodo de unión
- 3.1. Introducción
- 3.2. Modelo físico
- 3.2.1. Semiconductores instrínsecos y extrínsicos
- 3.2.2. Corrientes con desplazamiento y difusión
- 3.2.3. Unión P-N
- 3.2.4. Capacitancias
- 3.3. Circuito con diodos
- 3.3.1. Rectificadores
- 3.3.2. Otras aplicaciones
- 3.4. Aspectos prácticos
- 3.4.1. LEDs, Zener, fotodiodos, celdas solares; polarización y amplificación
- 3.4.2. SCR, triacs y otros elementos de electrónica industrial

- 3.4.3. Diodos comerciales
- MOSFET
- 4.1. Introducción
- 4.2. Modelo físico
- 4.2.1. Estructura
- 4.2.2. Capacitor Mos
- 4.2.3. Modos de operación y ecuaciones del MOSFET
- 4.2.4. Curvas características
- 4.3. Bloques fundamentales en circuitos con MOSFET
- 4.3.1. Fuente común
- 4.3.2. Drenaje común
- 4.4. Amplificadores
- 4.4.1. Amplificador inversor
- 4.4.2. Amplificador de corriente
- 4.4.3. Configuración cascodo
- 4.4.4. Seguidor de fuente
- 4.4.5. Amplificador diferencial
- 4.5. Espejos de corriente
- 4.6. Aspectos prácticos
- 4.6.1. MOSFETs comerciales
- 4.6.2. Polarización
- 5. BJT
- 5.1. Introducción
- 5.2. Modelos físico
- 5.2.1. Estructura
- 5.2.2. Modos de operación y ecuaciones
- 5.2.3. Curvas características
- 5.3. Bloques fundamentales en circuitos con BJT
- 5.3.1. Emisor común
- 5.3.2. Base común
- 5.3.3. Colector común
- 5.4. Amplificadores
- 5.4.1. Amplificador inversor
- 5.4.2. Amplificador de corriente
- 5.4.3. Configuración cascodo
- 5.4.4. Seguidor de emisor
- 5.4.5. Amplificador diferencial
- 5.5. Espejos de corriente
- 5.6. Aspectos prácticos
- 5.6.1. BJTs comerciales
- 5.6.2. Polarización
- 6. Otros dispositivos y aplicaciones
- 6.1. Análisis del circuito de un amplificador operacional
- 6.2. Osciladores
- 6.3. El 555
- 6.4. Circuitos digitales
- 6.5. Comparador

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRICA