Pontificia Universidad Católica de Chile Pontificia Universidad Católica de Chile
Arenas M., Barcelo P., Kozachinskiy A., Romero M., Subercaseaux B. (2025)

On Computing Probabilistic Explanations for Decision Trees

Revista : JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
Volumen : 83
Tipo de publicación : ISI Ir a publicación

Abstract

Formal XAI (explainable AI) is a growing area that focuses on computing explanations with mathematical guarantees for the decisions made by ML models. Inside formal XAI, one of the most studied cases is that of explaining the choices taken by decision trees, as they are traditionally deemed as one of the most interpretable classes of models. Recent work has focused on studying the computation of sufficient reasons, a kind of explanation in which given a decision tree T and an instance x, one explains the decision T (x) by providing a subset y of the features of x such that for any other instance z compatible with y, it holds that T (z) = T (x), intuitively meaning that the features in y are already enough to fully justify the classification of x by T. It has been argued, however, that sufficient reasons constitute a restrictive notion of explanation. For such a reason, the community has started to study their probabilistic counterpart, in which one requires that the probability of T (z) = T (x) must be at least some value delta is an element of (0, 1], where z is a random instance that is compatible with y. Our paper settles the computational complexity of delta-sufficient-reasons over decision trees, showing that both (1) finding delta-sufficient-reasons that are minimal in size, and (2) finding delta-sufficient-reasons that are minimal inclusion-wise, are computationally intractable. By doing this, we answer two open problems originally raised by Izza et al. (2021), and extend the hardness of explanations for Boolean circuits presented by W & auml;ldchen et al. (2021) to the more restricted case of decision trees. Furthermore, we present sharp non-approximability results under a widely believed complexity hypothesis. On the positive side, we identify structural restrictions of decision trees that make the problem tractable.