Pontificia Universidad Católica de Chile Pontificia Universidad Católica de Chile
Ruskowitz J.A., Suárez F., Tyler S.W. and Childress A.E. (2014)

Evaporation suppression and solar energy collection in a salt-gradient solar pond

Revista : Solar Energy
Volumen : 99
Páginas : 36-46
Tipo de publicación : ISI Ir a publicación


Evaporation represents a significant challenge to the successful operation of solar ponds. In this work, the suppression of evaporative losses from a salt gradient solar pond was investigated. Two floating element designs (floating discs and floating spheres) and a continuous cover were tested; all three covers/elements were transparent, which is unique from previous studies of evaporation suppression in ponds where increasing temperature and heat content are not desired. It was found that floating discs were the most effective element; full (88%) coverage of the solar pond with the floating discs decreases the evaporation rate from 4.8 to 2.5 mm/day (47% decrease), increases the highest achieved temperature from 34 °C to 43 °C (26% increase), and increases heat content from 179 to 220 MJ (22% increase). As a result of reduced evaporative losses at the surface, the amount of heat lost to the atmosphere is also reduced, which results in lower conductive losses from the NCZ and the LCZ and hence, increased temperatures in the NCZ and LCZ. The magnitude of evaporation reduction observed in this work is important as it allows solar pond operation in locations with limited water supply for replenishment. The increase in heat content allows more heat to be withdrawn from the pond for use in external applications, which significantly improves the thermal efficiencies of solar ponds