Pontificia Universidad Católica de Chile Pontificia Universidad Católica de Chile
Valois R., Araya-Vargas J., MacDonell S., Guzmán C., Fernandoy F., Yánez G., Cuevas J., Sproles E., Maldonado A. (2021)

Improving the underground structural characterization and hydrological functioning of an Andean peatland using geoelectrics and water stable isotopes in semi-arid Chile

Revista : Environmental Earth Sciences
Volumen : 80
Número : 41
Tipo de publicación : ISI Ir a publicación


The Mountain-Block Recharge (MBR), also referred to as the hidden recharge, consists of groundwater inflows from the mountain block into adjacent alluvial aquifers. This is a significant recharge process in arid environments, but frequently discarded since it is imperceptible from the ground surface. In fault-controlled Mountain Front Zones (MFZs), the hydrogeological limit between the mountain-block and adjacent alluvial basins is complex and, consequently, the groundwater flow-paths reflect that setting. To cope with the typical low density of boreholes in MFZs hindering a proper assessment of MBR, a combined geoelectrical-gravity approach was proposed to decipher groundwater flow-paths in fault-controlled MFZs. The study took place in the semiarid Western Andean Front separating the Central Depression from the Principal Cordillera at the Aconcagua Basin (Central Chile). Our results, corroborated by field observations and compared with worldwide literature, indicate that: (i) The limit between the two domains consists of N-S-oriented faults with clay-rich core (several tens of meters width low electrical-resistivity subvertical bands) that impede the diffuse MBR. The “hidden recharge” along the Western Andean Front occurs through (ii) focused MBR processes by (ii.a) open and discrete basement faults (mass defect and springs) oblique to the MFZ that cross-cut the N-S-oriented faults, and (ii.b) high-hydraulic transmissivity alluvial corridors in canyons. Alluvial corridors host narrow unconfined mountain aquifers, which are recharged by indirect infiltration along ephemeral streams and focused inflows from oblique basement faults. This study also revealed seepage from irrigation canals highlighting their key role in the recharge of alluvial aquifers in the Central Depression. The proposed combined geophysical approach successfully incorporated (hydro)geological features and geophysical forward/inverse modelling into a robust hydrogeological conceptual model to decipher groundwater flow-paths in fault-controlled MFZs, even in the absence of direct observation points.