Pontificia Universidad Católica de Chile Pontificia Universidad Católica de Chile
Calderón S., Sandoval C., Araya-Letelier G., Inzunza E., Arnau O. (2021)

Influence of different design parameters on the seismic performance of partially grouted masonry shear walls

Revista : Engineering Structures
Volumen : 239
Páginas : 112058
Tipo de publicación : ISI Ir a publicación


In recent earthquakes in Chile (e.g., Maule’s 2010 earthquake), buildings built with bed-joint partially grouted reinforced masonry (BJ-PG-RM) shear walls made of multi-perforated clay bricks (MPCB) have not collapsed, although significant damages have been reported. Additionally, experimental data on the influence of the different design parameters that control its seismic behavior is scarce, and the available expressions for estimating their lateral resistance are inaccurate. To address these issues, nine full-scale BJ-PG-RM walls made of MPCB were tested under axial pre-compression and cyclic lateral loads. The study addressed the influence of the aspect (height-to-length) ratio, axial pre-compression, mortar compressive strength, mortar joints’ thickness, bricks’ height, and horizontal and vertical reinforcement ratio. The results were analyzed in terms of hysteretic response, damage evolution, seismic performance parameters (shear strength, equivalent viscous damping ratio, ductility, and lateral stiffness degradation). All designed walls failed in a diagonal tension failure mode. Besides, all studied variables influenced the stresses and crack patterns. Also, the shear strength increases when: (i) lower aspect ratio or joint thickness are used; and (ii) higher axial load ratio, horizontal reinforcement ratio, vertical reinforcement ratio, or mortar compressive strength are used. Moreover, when damage progresses, the lateral secant stiffness decays faster as a result of: (i) larger joint thickness or vertical reinforcement ratio; (ii) lower mortar compressive strength. Most walls exhibited an equivalent viscous damping ratio between 5% and 10% for an intermediate state of damage. However, the evaluated design parameters did not considerably affect the development of the viscous damping ratio as a function of the drift ratio. The displacement ductility of the walls ranged from 1.5 to 2.5, where the height of bricks and the vertical reinforcement ratio had positive effects, and the joint thickness, the mortar compressive strength, and the horizontal reinforcement ratio a negative effect. The lateral resistance of tested walls was also estimated with six expressions, but none of them provided accurate results.