Pontificia Universidad Católica de Chile Pontificia Universidad Católica de Chile
Lobel H., Vidal R. and Soto A. (2015)

Learning Shared, Discriminative, and Compact Representations for Visual Recognition

Revista : IEEE Transactions on Pattern Analysis and Machine Intelligence
Volumen : 37
Número : 11
Páginas : 2218-2231
Tipo de publicación : ISI Ir a publicación


Dictionary-based and part-based methods are among the most popular approaches to visual recognition. In both methods, a mid-level representation is built on top of low-level image descriptors and high-level classifiers are trained on top of the mid-level representation. While earlier methods built the mid-level representation without supervision, there is currently great interest in learning both representations jointly to make the mid-level representation more discriminative. In this work we propose a new approach to visual recognition that jointly learns a shared, discriminative, and compact mid-level representation and a compact high-level representation. By using a structured output learning framework, our approach directly handles the multiclass case at both levels of abstraction. Moreover, by using a group-sparse prior in the structured output learning framework, our approach encourages sharing of visual words and thus reduces the number of words used to represent each class.We test our proposed method on several popular benchmarks. Our results show that, by jointly learning mid- and high-level representations, and fostering the sharing of discriminative visual words among target classes, we are able to achieve state-of-the-art recognition performance using far less visual words than previous approaches.