Pontificia Universidad Católica de Chile Pontificia Universidad Católica de Chile
Uquiche E., Fica X., Salazar K. and Valle J.M. (2012)

Time fractionation of minor lipids from cold-pressed rapeseed cake using supercritical CO2. http://dx.doi.org/10.1007/s11746-011-1999-1

Revista : Journal of the American Oil Chemists Society
Volumen : 89
Número : 6
Páginas : 1135-1144
Tipo de publicación : ISI Ir a publicación


This work explored the possibility of using supercritical carbon dioxide (SC-CO2) to achieve fractionation of pre-pressed rapeseed (Brassica napus) cake oil at 30–50 MPa, at 40 or 80 °C, and increase the concentration of minor lipids (sterols, tocopherols, carotenoids) in the oil. Minor lipids are partially responsible for desirable antioxidant effects that protect against degradation and impart functional value to the oil. The weight and concentration of minor lipids in oil fractions collected during the first 60 min were analyzed. Cumulative oil yield increased with pressure, and with temperature at ≥40 MPa, but was lower at 80 °C than at 40 °C when working at pressure ≤35 MPa. Differences in solubility between the oil and minor lipids explained fractionation effects that were small for tocopherols. Unlike tocopherols, which are more soluble in SC-CO2 than the oil, sterols and carotenoids are less soluble than the oil, and their concentration increased in the later stages of extraction, particularly at ≥40 MPa, when there was not enough oil to saturate the CO2 phase. Because of the fractionating effects on rapeseed oil composition, there was an increase in the antioxidant activity of the oil in the second half as compared to the first half of the extraction. Consequently, this study suggests that SC-CO2 extraction could be used to isolate vegetable oil fractions with increased functional value.