Pontificia Universidad Católica de Chile Pontificia Universidad Católica de Chile
Leiva-Aravena E., Vera M., Nerenberg R., Leiva E., Vargas I. (2021)

Biofilm formation of Ancylobacter sp. TS-1 on different granular materials and its ability for chemolithoautotrophic As(III)-oxidation at high concentrations

Revista : Journal of Hazardous Materials
Páginas : 126733
Tipo de publicación : ISI Ir a publicación

Abstract

The oxidation of arsenic (As) is a key step in its removal from water, and biological oxidation may provide a cost-effective and sustainable method. The biofilm-formation ability of Ancylobacter sp. TS-1, a novel chemolithoautotrophic As oxidizer, was studied for four materials: polypropylene, graphite, sand, and zeolite. After seven days under batch mixotrophic conditions, with high concentrations of As(III) (225 mg·L-1), biofilm formation was detected on all materials except for polypropylene. The results demonstrate As(III)-oxidation of TS-1 biofilms and suggest that the number of active cells was similar for graphite, sand, and zeolite. However, the biofilm biomass follows the specific surface area of each material: 7.0, 2.4, and 0.4 mg VSS·cm-3 for zeolite, sand, and graphite, respectively. Therefore, the observed biofilm-biomass differences were probably associated with different amounts of EPS and inert biomass. Lastly, As(III)-oxidation kinetics were assessed for the biofilms formed on graphite and zeolite under chemolithoautotrophic conditions. The normalized oxidation rate for biofilms formed on these materials was 3.6 and 1.0 mg·L-1·h-1·cm-3, resulting among the highest reported values for As(III)-oxidizing biofilms operated at high-As(III) concentrations. Our findings suggest that biofilm reactors based on Ancylobacter sp. TS-1 are highly promising for their utilization in As(III)-oxidation pre-treatment of high-As(III) polluted waters.